
Ektron PageBuilder QuickStart Guide
For Users, Administrators, and Developers

Streamline the process of building new pages on your Web site

EKTRON, INC. SOFTWARE LICENSE AGREEMENT

YOUR RIGHT TO USE THE PRODUCT DELIVERED IS SUBJECT TO THE TERMS AND
CONDITIONS SET OUT IN THIS LICENSE AGREEMENT. USING THIS PRODUCT SIGNIFIES
YOUR AGREEMENT TO THESE TERMS. IF YOU DO NOT AGREE TO THIS SOFTWARE
LICENSE AGREEMENT, DO NOT DOWNLOAD.

CUSTOMER should carefully read the following terms and conditions before using the software
program(s) contained herein (the “Software”). Downloading and/or using the Software or
copying the Software onto CUSTOMER’S computer hard drive indicates CUSTOMER’S
acceptance of these terms and conditions. If CUSTOMER does not agree with the terms of this
agreement, CUSTOMER should not download.

Ektron, Inc. (“Ektron”) grants, and the CUSTOMER accepts, a nontransferable and nonexclusive
License to use the Software on the following terms and conditions:

1. Right to use: The Software is licensed for use only in delivered code form. Each copy of the
Software is licensed for use only on a single URL. Each license is valid for the number of seats
listed below (the “Basic Package”). Any use of the Software beyond the number of authorized
seats contained in the Basic Package without paying additional license fees as provided herein
shall cause this license to terminate. Should CUSTOMER wish to add seats beyond the seats
licensed in the Basic Package, the CUSTOMER may add seats on a block basis at the then
current price for additional seats (see product pages for current price). The Basic Packages are
as follows:

Ektron CMS400.NET — Licensed for ten seats (10 named users) per URL.

Ektron eWebEditPro — Licensed for ten seats (10 named users) per URL.

Ektron eWebEditPro+XML — Licensed for ten seats (10 named users) per URL.

For purposes of this section, the term “seat” shall mean an individual user provided access to
the capabilities of the Software.

The CUSTOMER may not modify, alter, reverse engineer, disassemble, or decompile the
Software. This software product is licensed, not sold.

2. Duration: This License shall continue so long as CUSTOMER uses the Software in
compliance with this License. Should CUSTOMER breach any of its obligations hereunder,
CUSTOMER agrees to return all copies of the Software and this License upon notification and
demand by Ektron.

3. Copyright: The Software (including any images, “applets,” photographs, animations, video,
audio, music and text incorporated into the Software) as well as any accompanying written
materials (the “Documentation”) is owned by Ektron or its suppliers, is protected by United
States copyright laws and international treaties, and contains confidential information and trade
secrets. CUSTOMER agrees to protect the confidentiality of the Software and Documentation.
CUSTOMER agrees that it will not provide a copy of this Software or Documentation nor
divulge any proprietary information of Ektron to any person, other than its employees, without
the prior consent of Ektron; CUSTOMER shall use its best efforts to see that any user of the
Software licensed hereunder complies with this license.

4. Limited Warranty: Ektron warrants solely that the medium upon which the Software is
delivered will be free from defects in material and workmanship under normal, proper and
intended usage for a period of three (3) months from the date of receipt. Ektron does not
warrant the use of the Software will be uninterrupted or error free, nor that program errors will
be corrected. This limited warranty shall not apply to any error or failure resulting from (i)
machine error, (ii) Customer's failure to follow operating instructions, (iii) negligence or
accident, or (iv) modifications to the Software by any person or entity other than Company. In
the event of a breach of warranty, Customer’s sole and exclusive remedy, is repair of all or any
portion of the Software. If such remedy fails of its essential purpose, Customer’s sole remedy
and Ektron’s maximum liability shall be a refund of the paid purchase price for the defective
Products only. This limited warranty is only valid if Ektron receives written notice of breach of
warranty within thirty days after the warranty period expires.
5. Limitation of Warranties and Liability: THE SOFTWARE AND DOCUMENTATION ARE SOLD
“AS IS” AND WITHOUT ANY WARRANTIES AS TO THE PERFORMANCE, MERCHANTIBILITY,
DESIGN, OR OPERATION OF THE SOFTWARE. NO WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE IS OFFERED. EXCEPT AS DESCRIBED IN SECTION 4, ALL
WARRANTIES EXPRESS AND IMPLIED ARE HEREBY DISCLAIMED.

NEITHER COMPANY NOR ITS SUPPLIERS SHALL BE LIABLE FOR ANY LOSS OF PROFITS,
LOSS OF BUSINESS OR GOODWILL, LOSS OF DATA OR USE OF DATA, INTERRUPTION OF
BUSINESS NOR FOR ANY OTHER INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES OF ANY KIND UNDER OR ARISING OUT OF, OR IN ANY RELATED TO THIS
AGREEMENT, HOWEVER, CAUSED, WHETHER FOR BREACH OF WARRANTY, BREACH OR
REPUDIATION OF CONTRACT, TORT, NEGLIGENCE, OR OTHERWISE, EVEN IF COMPANY OR
ITS REPRESENTATIVES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS.

6. Additional Terms and Conditions apply

When using the CMS400 map control, Subject to the terms and conditions of the Map
provider (Microsoft Virtual Earth or Google maps)

Microsoft Virtual Earth - http://www.microsoft.com/virtualearth/product/terms.html

If you have any questions would like to find out more about a MWS/VE Agreement, please
contact maplic@microsoft.com for information.

Google Maps - http://code.google.com/apis/maps/terms.html

7. Miscellaneous: This License Agreement, the License granted hereunder, and the Software
may not be assigned or in any way transferred without the prior written consent of Ektron. This
Agreement and its performance and all claims arising from the relationship between the parties
contemplated herein shall be governed by, construed and enforced in accordance with the laws
of the State of New Hampshire without regard to conflict of laws principles thereof. The parties
agree that any action brought in connection with this Agreement shall be maintained only in a
court of competent subject matter jurisdiction located in the State of New Hampshire or in any
court to which appeal therefrom may be taken. The parties hereby consent to the exclusive
personal jurisdiction of such courts in the State of New Hampshire for all such purposes. The
United Nations Convention on Contracts for the International Sale of Goods is specifically
excluded from governing this License. If any provision of this License is to be held
unenforceable, such holding will not affect the validity of the other provisions hereof. Failure
of a party to enforce any provision of this Agreement shall not constitute or be construed as a
waiver of such provision or of the right to enforce such provision. If you fail to comply with any
term of this License, YOUR LICENSE IS AUTOMATICALLY TERMINATED. This License
represents the entire understanding between the parties with respect to its subject matter.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, THAT YOU UNDERSTAND
THIS AGREEMENT, AND UNDERSTAND THAT BY CONTINUING THE INSTALLATION OF THE
SOFTWARE, BY LOADING OR RUNNING THE SOFTWARE, OR BY PLACING OR COPYING
THE SOFTWARE ONTO YOUR COMPUTER HARD DRIVE, YOU AGREE TO BE BOUND BY
THIS AGREEMENT’S TERMS AND CONDITIONS. YOU FURTHER AGREE THAT, EXCEPT FOR
WRITTEN SEPARATE AGREEMENTS BETWEEN EKTRON AND YOU, THIS AGREEMENT IS A
COMPLETE AND EXCLUSIVE STATEMENT OF THE RIGHTS AND LIABILITIES OF THE
PARTIES.

Copyright 1999 - 2009 Ektron®, Inc. All rights reserved.

EKTRON is a registered trademark of Ektron, Inc.

Version 7.6.6, May 2009.

Guide Revision 2.0

Contents
Section 1 — Overview . 1

PageBuilder for Developers. 1

Wireframes, Dropzones, and Widgets . 1

PageBuilder for Everyday Users . 2

Streamline Process and Improve Efficiency . 2

Section 2 — Building Pages . 3

AcmeBooks.com . 3

PageBuilder Workflow. 3

Designing and Development . 4

Implementation and Maintenance . 4

Steps to Creating a “PageBuilder” Page . 4

Create a PageBuilder Wireframe . 5

Enable Manual Aliasing . 10

Identify the PageBuilder Wireframe in the CMS . 11

Assign the PageBuilder Wireframe to a Folder . 12

Create the New Page . 13

Place Widgets on the Page . 16

Part 1: Add New Column and Set Column Widths . 17

Part 2: Insert New Content Block Widget into Right Column. 18

Part 3: Insert a List Summary Widget into Left Column. 22

Final Assessment . 24

Section 3 — PageBuilder Code Samples .25

PageLayout.aspx . 25

PageLayout.aspx.cs . 26

Section 4 — Creating your own Widgets .29
iii Ektron PageBuilder QuickStart Guide

Contents
What’s a Widget? . 29

Widgets at AcmeBooks.com . 29

Using Widgets on a PageBuilder Page . 29

Widgets, DropZones, and Pages . 30

Widget States . 31

Creating a Widget . 33

The “Hello World” Widget . 33

Copy, Paste and Rename HelloWorld.ascx and HelloWorld.ascx.jpg . 33

Update the Class Names in the New Files . 37

Add Widget in Ektron CMS400.NET Workarea . 38

Removing a Widget from the Workarea . 45

Final Assessment from the CIO. 47

Section 5 — Standard Widgets .49

Working with the Flash Widget . 56

Section 6 — Advanced PageBuilder Topics .59

Customizing the PageBuilder Menu Control . 59

Determining the Ektron CMS400.NET Folder to Which Pages are Saved . 59

Changing the Page’s Cache Interval . 60

Customizing the DropZone User Control . 60

Letting Users Add Columns to a DropZone . 60

Letting Users Resize a Dropzone . 61

Setting a DropZone’s Column Widths Programmatically . 61

Customizing the Wireframe. 62

Assigning a Default Page to a Wireframe . 62

Assigning a Default Taxonomy to a Wireframe . 63

Customizing Widgets . 65

Working with JavaScript and Cascading Style Sheets . 65

Verifying that a Page is a PageBuilder Page . 66

Applying Global and Local Properties to Widgets . 66
iv Ektron PageBuilder QuickStart Guide

Contents
Adding a Field to a Widget . 70

Including Help for a Widget . 72

Opening a Widget’s Edit Properties Screen in a Modal Dialog . 73
v Ektron PageBuilder QuickStart Guide

Contents
vi Ektron PageBuilder QuickStart Guide

1 Overview
An introduction to the benefits of PageBuilder
As the name suggests, PageBuilder is a tool that enables you to build Web pages in the Ektron CMS400.NET. What makes PageBuilder unique as a
Web page creation tool is two-fold:

• Firstly, it allows non-technical users a simple way to build rich and fully-featured Web pages.

• Secondly, the Ektron development community can leverage PageBuilder as a simple way to reuse and share common functionality from one
Ektron-powered site to another.

PageBuilder leverages the versatility of Ektron Portal Framework to streamline the process of building new pages on your Web site. Members of an
organizations’ Web team can now more efficiently make changes to pages and content, without relying on the availability of developers. Ultimately,
PageBuilder helps not only redefine roles within an organization, but also maximizes efficiency and productivity.

In a typical PageBuilder scenario, the initial layout is managed by developers, while the final content, design, and placement of functionality is
managed by non-technical users who have a need for creating specific Web pages. These non-technical, content authors would typically be marketing
departments or similar organizations.

PageBuilder for Developers
To someone new to PageBuilder, it might seem as though PageBuilder takes the work of building and maintaining a Web site out of the IT department’s
hands. However, this is not the case. Web page developers still create page templates, building wireframes into which content authors place functional
widgets that will make the Web page a success. PageBuilder allows the IT department to concentrate on what they do best: develop the back end of a
system and address the technical nuances that today’s Web sites generate. Content and messaging is out of their hands and squarely where it belongs:
in Marketing.

Wireframes, Dropzones, and Widgets

Page Builder requires developers to create a wireframe template. This wireframe is the basic architecture for a Web page. As developers build
wireframes, they add dropzone user controls where non-technical users need to insert the content, design, and messaging of the site. These zones are
literally the areas into which someone can “drop” a widget.

Widgets are mini-applications that can provide either specific functionality (calculators, search, and social bars, etc) or areas into which you can add
Ektron CMS400.NET content (content blocks, list summaries, collections, etc.). It is simple for developers to apply classes to these pages. Developers
can also manage the level of control non-technical users have. For example, a developer can configure hard limits for the width of dropzones.

After a wireframe is created, an administrator assigns it to a folder, creates a page, and selects the widgets that will be available to place on that page.
1 Ektron PageBuilder QuickStart Guide

1 Overview
PageBuilder for Everyday Users
Marketing teams (technical and non-technical alike) can build out entire pages on the wireframe templates by dragging-and-dropping widgets. This
creates the user experience on the page while maintaining a consistent “look and feel.” With PageBuilder, they can launch campaigns as needed and
respond to market conditions rapidly with unique Web pages that have targeted and effective content.

PageBuilder pages have the same business-level controls as content blocks. Like other Ektron CMS400.NET content, PageBuilder pages maintain
permissions, approval chains, enable SEO (through metadata), Taxonomy, Aliasing, and allow users to view histories and restore past versions.

Approvers can preview PageBuilder pages before they go live, and pages can be cloned and then modified to maintain look and feel across campaigns
or to support A/B split testing.

Streamline Process and Improve Efficiency

PageBuilder adds a level of agility to key processes that overlap marketing and IT departments. By using it to streamline the workflow of launching new
pages, time and expenses can be minimized. Moreover, your IT infrastructure remains secure because non-IT resources do not need to access
mission-critical servers — all needed assets are accessible through the Workarea.

The CMS400.NET PageBuilder is the logical evolution of the WYSIWYG editor, extending the concept of content management beyond single elements
of content. Now, that philosophy can be applied to whole pages and even entire sites, boosting productivity and giving you the tools you need to make
your Web site do exactly what you want it to do.
2 Ektron PageBuilder QuickStart Guide

2 Building Pages
Use case: AcmeBooks.com
AcmeBooks.com
AcmeBooks.com is a fast growing company that specializes in foreign and hard-to-find books. Recognizing it needed a stronger presence on the Web,
it recently installed and deployed Ektron CMS400.NET.

The Chief Information Officer of Acme Books is especially excited about the company’s recent move to CMS400.NET. She is particularly interested in
PageBuilder, feeling it will enable the Marketing team to respond to changing market conditions and quickly launch and communicate promotions on
the AcmeBooks.com Web site. She is also pleased that PageBuilder promises to appease the company’s Web site developers. No longer will they have
to deal with numerous daily requests for content changes from Marketing.

So, she wonders, “How does it all work? How will the Web team work together to use PageBuilder?” Right now, the team is composed of herself and:

Pete. He runs the Web Development team (including designers).

Grace. She is the CMS/Web site administrator.

Pierre. Acme Books' Marketing guru. He is also in charge Marketing and Acme Books’ content authors.

PageBuilder Workflow
Let’s start with the general PageBuilder workflow. Basically, there are three stages:

Envisioning the “Big Picture”

In the beginning, stakeholders define functionality and “look” needed on Web pages. At Acme Books, this includes the CIO, the Marketing team, the
CMS400.NET Administrators, and the Web designers and developers in the IT department.

When a consensus is reached, Pete’s designers and developers define the page layout and present it to the whole team for review and approval.
3 Ektron PageBuilder QuickStart Guide

2 Building Pages
Designing and Development

Here, Pete’s developers identify page areas and build wireframes based on design specifications. At this point, they should understand the functionality
needed and use, modify or build widgets based on the requirements.

Implementation and Maintenance

When complete, a PageBuilder page is active and in use by Pierre and his team on a daily basis. Pierre can create pages, drag-and-drop widgets, and
edit properties as necessary. Subject matter experts create and maintain content.

Steps to Creating a “PageBuilder” Page
Creating a Web page with PageBuilder functionality at Acme Books consists of the following tasks:

• "Create a PageBuilder Wireframe" on page 5. This is performed by Pete and his developers.

• "Enable Manual Aliasing" on page 10. This is performed by Grace, the Web site Administrator.

• "Identify the PageBuilder Wireframe in the CMS" on page 11. This is performed by Grace, the Web site Administrator.

• "Assign the PageBuilder Wireframe to a Folder" on page 12. This is performed by Grace, the Web site Administrator.

• "Create the New Page" on page 13. This is performed by Pierre and his team.
4 Ektron PageBuilder QuickStart Guide

Building Pages 2
• "Place Widgets on the Page" on page 16. This is performed by Pierre and his team.

Create a PageBuilder Wireframe
As explained earlier, Pete first creates a wireframe. Next, he defines dropzones, areas of the page on which a content creator drags and drops widgets.

The relationship between a wireframe, a dropzone, and a widget is illustrated below.

Here is how Pete creates a wireframe that contains one dropzone.

1. He opens the Web site in Visual Studio.

2. He adds a new Web form to the site by clicking Website > Add New Item.

3. He selects Web Form.

4. Pete sets the Name to PageLayout.aspx, the Language to Visual C#, and checks Select master page.
5 Ektron PageBuilder QuickStart Guide

2 Building Pages
5. He clicks Add, then changes to Source view.

6. He registers the following assemblies directly below the @ Page directive (at the top of the file).

<%@ Register Assembly="Ektron.Cms.Widget" Namespace="Ektron.Cms.PageBuilder" TagPrefix="PB" %>

<%@ Register Assembly="Ektron.Cms.Controls" Namespace="Ektron.Cms.Controls" TagPrefix="CMS" %>

7. Next, he’ll drop a PageBuilder Menu and DropZone user control onto the page. When rendered, a PageBuilder menu and control look like this.

.

This control lets a content author drop widgets on the page. It also provides the save/check in/publish functions, and lets the author preview how the
page will look when it’s published.

When rendered on a page, a DropZone user control looks like this.

The content author uses a DropZone control as a placeholder, into which he will insert widgets. He can also use it to insert additional placeholders as
6 Ektron PageBuilder QuickStart Guide

Building Pages 2
needed.

8. He switches Visual Studio from Source to Design view.

9. In the Visual Studio explorer, he finds the /Workarea/PageBuilder/PageControls folder.

10. He drags and drops the PageHost.ascx user control onto the page.

11. The left panel now looks like this.
7 Ektron PageBuilder QuickStart Guide

2 Building Pages
12. Below the PageHost control (below Pullchain), he drags and drops the Dropzone.ascx user control onto the page.

13. He switches to source view.

Note: See
"Advanced Page-
Builder Topics" on
page 59 for infor-
mation on cus-
tomizing user
controls.

14. The screen now looks like this.
8 Ektron PageBuilder QuickStart Guide

Building Pages 2
Note: Ektron Best
Practice is to set
values for the
FolderID and
SelTaxono-
myID properties.
See "How a Page’s
Default Folder is
Set" on page 59
and "Assigning a
Default Taxonomy
to a Wireframe" on
page 63

Note that Pete adds only one dropzone now. He plans to add more later.

15. Pete is finished with the user control file and is ready to begin working on his codebehind file.

16. Pete opens the codebehind page, PageLayout.aspx.cs.

17. He adds a reference to the PageBuilder namespace by adding the following line after the last using statement.

using Ektron.Cms.PageBuilder;

18. Inherit the PageBuilder class instead of System.Web.UI.Page. To do this, change:

public partial class PageLayout : System.Web.UI.Page

To:

public partial class PageLayout : PageBuilder

19. Pete adds the following code, which handles errors and notifications, after the Page_Load event.

Tip! You can copy the following code from siteroot/developer/pagebuilder/pagelayout.aspx.cs.

public override void Error(string message)

{

jsAlert(message);

}

9 Ektron PageBuilder QuickStart Guide

2 Building Pages
public override void Notify(string message)

{

jsAlert(message);

}

public void jsAlert(string message)

{

Literal lit = new Literal();

lit.Text = "<script type=\"\" language=\"\">{Ø}</script>";

lit.Text = string.Format(lit.Text, "alert('" + message + "');");

Form.Controls.Add(lit);

}

He does not need to use the jsAlert system defined here. If he doesn’t, Pete must somehow add overrides to handle errors and notifications to the
codebehind.

20. Save the PageLayout.aspx and PageLayout.aspx.cs files.

Enable Manual Aliasing
Note: The Ektron
“best practice” is
to enable Manual
and Auto aliasing.

Pete’s development team needs to make sure that manual aliasing is enabled within Ektron CMS400.NET. Doing this allows you to apply a user-
friendly URL when you’re creating a PageBuilder page, as shown below.

Note: See “URL
Aliasing” in the
Administrator
Guide for more
information.

To enable manual aliasing, the development team does these steps.

1. In the Ektron CMS400.NET Workarea, they go to Settings > Configuration > URL Aliasing > Settings.

2. They select Manual, then click Save ().
10 Ektron PageBuilder QuickStart Guide

Building Pages 2
Identify the PageBuilder Wireframe in the CMS
In this step Grace, the CMS administrator, makes the wireframe that Pete created available within the Ektron CMS400.NET Workarea.

1. In the Ektron CMS400.NET Workarea, she goes to Settings > Configuration > Template Configuration.

2. She clicks the Add button ().

3. The Add a New Template screen appears.

4. Grace clicks the browse button and navigates to PageLayout.aspx, the wireframe Pete created earlier in "Create a PageBuilder Wireframe" on
page 5.

5. She clicks the PageBuilder Wireframe check box. This box tells Ektron CMS400.NET that this template can be used to create a PageBuilder page.

All widgets that can be applied to the template appear. Ektron CMS400.NET provides over 30 standard widgets. See "Standard Widgets" on
page 49.
11 Ektron PageBuilder QuickStart Guide

2 Building Pages
Note: "Creating
your own Wid-
gets" on page 29
explains how to
create a custom
widget.

6. Grace clicks the ContentBlock and List Summary widgets. When she does, their background color changes.

7. She clicks Save ().

Assign the PageBuilder Wireframe to a Folder
Here, Grace creates a folder for the content that will appear on the new page. To accomplish this, she does the following.

1. Grace goes to Content in the Ektron CMS400.NET Workarea. All folders appear in the left panel.

2. She clicks the Root folder (highlighted below).

Note: For more
information about
folder permis-
sions and
approval chains,
see “Setting Per-
missions” in the
Administrator
Guide.

3. She clicks New > Folder.

Grace knows that it is an Ektron best practice to keep content and PageBuilder pages in separate folders, so she will later create and configure a
folder called “Content”. The content folder will simply contain content blocks and other assets, as well as sub-folders.

4. She accesses the folder properties for the new folder.
12 Ektron PageBuilder QuickStart Guide

Building Pages 2
5. In the Foldername field, she types Pages.

Next, Grace will assign the template created earlier as the default (and only) template for this folder. This will ensure that only PageBuilder pages can
be created in this folder.

6. In the Page Templates area (circled below), Grace clears the Inherit Parent Template Configuration option and clicks OK at the prompt.

Note: For more
information about
folder inheri-
tance, see “Set-
ting Permissions”
in the Administra-
tor Guide.

7. She selects PageLayout.aspx from the template list. This is the wireframe Pete created earlier.

8. She clicks Add (to the right of the pull-down menu). PageLayout.aspx is now added to the list of page templates.

9. She deletes CMSlogin.aspx from the list to ensure that no content is placed in the folder.

10. Grace selects PageLayout.aspx (the default option, circled below) and clicks Save().

.

11. Grace will follow steps 3 through 6 to create a folder for content. However, this time, instead of assigning pagelayout.aspx as the template, she
will assign a template used to create Ektron CMS400.NET content.

Create the New Page
It’s time for Pierre and his team to create a PageBuilder page. Currently, at AcmeBooks.com, there is a pressing need to market a new series of mystery
novels from an up-and-coming Australian novelist. So, the Marketing team needs to quickly create a Web page to announce the new series. Here’s how
they build the page with PageBuilder.
13 Ektron PageBuilder QuickStart Guide

2 Building Pages
Important:
When you edit
Pagebuilder
pages in the
Ektron
CMS400.NET
Workrea via
Internet Explorer,
IE version 7 or
higher is required.

1. They click the Pages folder, which was created in "Assign the PageBuilder Wireframe to a Folder" on page 12.

2. They click New > Page Layout.

3. The Add New Page screen appears.

4. The team enters New Australian Mystery Series in the Page Title field.

5. By default, the Alias matches the Page Title. The Marketing team changes it to Australian_Mystery.
14 Ektron PageBuilder QuickStart Guide

Building Pages 2
They do this in the Alias field so the new page has a user-friendly name. For example, by default, the page’s name is www.acmebooks.com/
new_mystery_series.aspx. The alias Australian_Mystery lets the page display as www.acmebooks.com/
Australian_Mystery.

6. In the Page Layout area, the Marketing team clicks PageLayout.aspx, the wireframe assigned to this folder in "Assign the PageBuilder Wireframe
to a Folder" on page 12. A green checkmark and background color indicate this wireframe will be used to create the page.

Note: All wire-
frame templates
you assign to a
folder’s proper-
ties appear in the
Page Layout area.

7. After clicking Next, the following screen appears.

This allows the team to assign metadata, taxonomy categories, and a summary to the page.

8. Click Finish.

9. The following message appears. Press OK.
15 Ektron PageBuilder QuickStart Guide

2 Building Pages
Place Widgets on the Page
Note: For infor-
mation about how
to create a wid-
get, see "Creating
your own Wid-
gets" on page 29.

After Pierre and the Marketing team create the page, a new page opens. It contains one dropzone, which consists of one Add Column button and one
column (shown below).

The top of the page contains a PageBuilder menu control. Pierre will use it to perform actions on the page, such as check in, view properties, and drop
widgets onto the page.

Pierre uses the right/left arrow buttons (circled below) to open and close the PageBuilder menu.

Pierre determines that the page needs a two-column layout, as shown below.
16 Ektron PageBuilder QuickStart Guide

Building Pages 2
Note: Although
you can drop
existing content
onto the page, the
Marketing team
will create new
content on the
page.

• The left column is 35% wide and displays a list of all content in the Marketing folder. Web site visitors use the list to access all Marketing
collateral for AcmeBooks.com.

• The right column is 65% wide and displays a single content block.

Pierre’s Marketing team creates this layout in three steps:

• "Part 1: Add New Column and Set Column Widths" on page 17

• "Part 2: Insert New Content Block Widget into Right Column" on page 18

• "Part 3: Insert a List Summary Widget into Left Column" on page 22

Part 1: Add New Column and Set Column Widths
In this part of the procedure, the Marketing team adds a second column then sets the width of both columns.

1. They click the Add Column button, and a new column appears to the right of the existing one.

2. They set the left column width to 35% by clicking the pencil icon (circled below).
17 Ektron PageBuilder QuickStart Guide

2 Building Pages
3. A field lets them enter a width and measurement (pixels or percent).

4. So, they enter 35 into the New Width field, change the measurement to Percent, and click Save.

5. Then, the team sets the right column to 65% width by clicking the pencil icon, changing its width to 65 Percent, and clicking Save.

6. Now the screen looks like this.

Part 2: Insert New Content Block Widget into Right Column
Now that Pierre’s team has set up the columns, Pierre is eager to try inserting a ContentBlock widget into the right column.

1. From the small block in the center of the PageBuilder menu, Pierre clicks the down arrow (circled below).
18 Ektron PageBuilder QuickStart Guide

Building Pages 2
Note: Pierre tells
his team that if
they do not see
the PageBuilder
Menu, look for
small block with
two arrows, one
orange and one
blue (shown
right). Click the
orange arrow to
open the menu.

2. All widgets that the Web site administrator (Grace) assigned to the page wireframe in "Identify the PageBuilder Wireframe in the CMS" on page 11
appear.

3. Pierre places the cursor over the content block widget and drags it below the widget panel.

4. The widget panel disappears.

5. Pierre drops the content block widget in the right column.

6. That column looks like this.
19 Ektron PageBuilder QuickStart Guide

2 Building Pages
7. Pierre clicks the pencil icon (circled above), and the following screen appears.

8. He selects the Content folder, and clicks New in the lower right corner (circled above).

9. The Add Content screen appears.

10. In the Title field, Pierre enters “New Australian Mystery Series”.

11. In the content area, he enters some text about the series of books, and clicks Check In.
20 Ektron PageBuilder QuickStart Guide

Building Pages 2
12. The content displays as shown below.

13. When the Marketing team wants to edit content on this page, they can click the Access Point in the upper left corner. A menu displays.
21 Ektron PageBuilder QuickStart Guide

2 Building Pages
Part 3: Insert a List Summary Widget into Left Column
Now that Pierre has inserted content in the right column, he can insert a List Summary widget in the left column.

1. From the PageBuilder menu, he clicks the down arrow (circled below).

2. All widgets Grace (the CMS administrator) assigned to the page wireframe in "Identify the PageBuilder Wireframe in the CMS" on page 11
appear.

3. Pierre places the cursor over the List Summary widget and drags it below the widget panel.

4. The widget panel disappears.

5. He drops the List Summary icon in the left column.

6. That column looks like this.
22 Ektron PageBuilder QuickStart Guide

Building Pages 2
7. The widget displays a list summary for content in the root folder. Pierre needs to change it to refer to the Content folder. To do that, he clicks the
pencil icon in the widget’s top right corner (circled above).

8. The following screen appears.

9. He clicks the Folder tab and selects the Content folder.

10. He clicks Save, and the list summary shows content in the Content folder.
23 Ektron PageBuilder QuickStart Guide

2 Building Pages
11. From the PageBuilder menu, Pierre clicks File > Check In.

12. The whole Marketing team can now review the page in Preview mode and make sure it is formatted properly.

13. If they need to change it, they can click File > Edit from the PageBuilder menu.

Final Assessment
The CIO of AcmeBooks.com is can see the power of the PageBuilder, and is convinced that this will greatly increase effectiveness of the company’s
Marketing and sales goals. The simple workflow and ease of use will help the Marketing team quickly deploy and launch marketing campaigns and
keep the Web site fresh and dynamic.

She still has one lingering question:

“How on earth do you build a widget?”
24 Ektron PageBuilder QuickStart Guide

PageBuilder Code Samples
Working with PageBuilder code3
The following shows a complete example of pagelayout.aspx

PageLayout.aspx
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="PageLayout.aspx.cs"
Inherits="Developer_PageBuilder_PageLayout" %>

<%@ Register Src="~/Workarea/PageBuilder/PageControls/PageHost.ascx" TagName="PageHost"

 TagPrefix="ucPageBuilder" %>

<%@ Register Src="~/Workarea/PageBuilder/PageControls/DropZone.ascx" TagName="DropZone"

 TagPrefix="ucPageBuilder" %>

<%@ Register Assembly="Ektron.Cms.Widget" Namespace="Ektron.Cms.PageBuilder"

TagPrefix="PB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Page Builder Sample</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <ucPageBuilder:PageHost ID="ucCms400Developer" FolderID="382" runat="server" />

<PB:DropZone ID="top" AllowAddColumn="true" AllowColumnResize="true" runat="server">

<ColumnDefinitions>

<PB:ColumnData columnID="0" unit="percent" width="100" />

</ColumnDefinitions>

</PB:DropZone>

 </div>

 <div>
25 Ektron PageBuilder QuickStart Guide

3 PageBuilder Code Samples
<PB:DropZone ID="bottom" AllowAddColumn="true" AllowColumnResize="true" runat="server">

<ColumnDefinitions>

<PB:ColumnData columnID="0" unit="percent" width="100" />

</ColumnDefinitions>

</PB:DropZone>

 </div>

 <div>

 </div>

 </form>

</body>

</html>

PageLayout.aspx.cs
The following shows a complete example of pagelayout.aspx.cs

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using Ektron.Cms.PageBuilder;

public partial class Developer_PageBuilder_PageLayout : PageBuilder

{

 protected void Page_Load(object sender, EventArgs e)

 {
26 Ektron PageBuilder QuickStart Guide

PageBuilder Code Samples 3
 }

 public override void Error(string message)

 {

 jsAlert(message);

 }

 public override void Notify(string message)

 {

 jsAlert(message);

 }

 public void jsAlert(string message)

 {

 Literal lit = new Literal();

 lit.Text = "<script type=\"\" language=\"\">{0}</script>";

 lit.Text = string.Format(lit.Text, "alert('" + message + "');");

 Form.Controls.Add(lit);

 }

}

27 Ektron PageBuilder QuickStart Guide

3 PageBuilder Code Samples
28 Ektron PageBuilder QuickStart Guide

Creating your own Widgets
Using and creating widgets4
What’s a Widget?
Widgets are .NET user controls that allow a site visitor to perform a function on a Web page. They are small portions of code that developers can write
once and then be reused multiple times by content authors across a site.

For example, a widget can provide a simple calculator or a stock ticker. Or, it can display significant information from Ektron CMS400.NET, such as a
content block or a List Summary.

Widgets at AcmeBooks.com

While this definition adds some clarity to what widgets are, the CIO and the Web team still have a lot of questions about how to use widgets, and how
they are created.

So, let’s get started with using and building widgets.

Using Widgets on a PageBuilder Page
After widgets are integrated into CMS400.NET, users (like the Marketing team) can add them to a Dashboard in their profile page or a Community
Group’s page. They can also drag-and-drop these building blocks onto a PageBuilder page (as shown below).

Note: Over 30
standard widgets
included in Ektron
CMS400.NET.
See "Standard
Widgets" on
page 49
29 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
Widgets, DropZones, and Pages
The relationship between a wireframe, dropzones, and widgets is shown below.

The above illustration of a wireframe depicts how:

• A wireframe can have several dropzones

• Each dropzone can have several columns

• Each column can have several widgets

Ektron CMS400.NET stores each page’s data (a serialized XML string) as a type of content within the Ektron CMS400.NET Workarea. The string is
stored like other content types, such as HTML content and XML Smart Forms. The following illustration shows a widget’s page data within the
Workarea.
30 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
Widget States
Widgets placed on a PageBuilder page have three possible combinations of states.

Page
mode

Widget
mode State Illustration

View View Widget content appears on page
31 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
In a widget’s user control file, you create an asp:MultiView element that determines available actions when a widget is in View mode and Edit
mode. See sample below:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="HelloWorld.ascx.cs"
Inherits="widgets_HelloWorld" %>

<%@ Register Assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"

Namespace="System.Web.UI" TagPrefix="asp" %>

<asp:MultiView ID="ViewSet" runat="server" ActiveViewIndex="0">

<asp:View ID="View" runat="server">

<!-- You Need To Do -->

<asp:Label ID="HelloTextLabel" runat="server"></asp:Label>

<asp:Label ID="CheckBoxLabel" runat="server"></asp:Label>

<!-- End To Do -->

</asp:View>

<asp:View ID="Edit" runat="server">

<div id="<%=ClientID%>_edit">

<!-- You Need To Do -->

<asp:TextBox ID="HelloTextBox" runat="server" Style="width: 95%"> </asp:TextBox>

<asp:CheckBox ID="MyCheckBox" runat="server" Checked="false" />

Edit View Widget can be dragged/dropped, moved,
deleted

Edit Edit User defines widget information

Page
mode

Widget
mode State Illustration
32 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
<!-- End To Do -->

<asp:Button ID="CancelButton" runat="server" Text="Cancel" OnClick="CancelButton_Click" />

<asp:Button ID="SaveButton" runat="server" Text="Save" OnClick="SaveButton_Click" />

</div>

</asp:View>

</asp:MultiView>

Creating a Widget
A widget consists of three file types.

• .ascx - contains a widget’s source code

• .ascx.cs or .vb - contains widget’s codebehind

• .ascx.jpg - image that represents a widget in the widget selection tool

Note: Your widget
might use
additional files,
such as .css or .js
files. Ektron
recommends
placing these files
in a folder within
site root/
widgets, and
giving the folder
the same name as
the custom
widget.

When creating a widget, you save files to the site root/widgets folder. This folder path is defined in the site root/web.config file, so if Pete
needs to change the folder name or path, he must update the following web.config ek_widgetPath element:

<add key=”ek_widgetPath” value=”Widgets/" /> .

The “Hello World” Widget

To get a basic understanding of how to create a widget, Pete will create a simple widget, which will reside in the site root/widgets folder. This
widget is based on the Hello World widget that is installed with the Developer Sample site. It uses the following files:

• HelloWorld.ascx - user control file

• HelloWorld.ascx.cs - user control codebehind file

• HelloWorld.ascx.jpg - image that represents this control on the widget menu

Pete will complete these tasks to create a widget.

• "Copy, Paste and Rename HelloWorld.ascx and HelloWorld.ascx.jpg" on page 33

• "Update the Class Names in the New Files" on page 37

• "Add Widget in Ektron CMS400.NET Workarea" on page 38

Copy, Paste and Rename HelloWorld.ascx and HelloWorld.ascx.jpg

1. Open your Web site in Visual Studio.
33 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
2. In the Visual Studio Solution Explorer, open the widgets folder.

3. Within that folder, scroll down to and select HelloWorld.ascx.
34 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
4. Right click the mouse and select Copy.

5. Scroll up to the widgets folder.

6. Right click the mouse and select Paste.
35 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
7. Scroll down until you see Copy of HelloWorld.ascx.

8. Right click the mouse and select Rename.
36 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
9. Rename the file new_widget.ascx. Notice that Visual Studio also renames the codebehind file to new_widget.ascx.cs.

Note: The image
file is 48 x 48
pixels and 72 dpi

10. Copy, paste, then rename the helloworld.ascx.jpg file to new_widget.ascx.jpg. Ektron CMS400.NET administrators (like
Grace) and content authors (like the Marketing team) use a widget’s image to select it, as shown below.

Update the Class Names in the New Files

1. Open new_widget.ascx.

2. On the first line of that file, replace the reference to HelloWorld (circled below) with new_widget.
37 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
3. Open the codebehind file, new_widget.ascx.cs.

4. Again, replace the class HelloWorld with new_widget.

5. Save new_widget.ascx and new_widget.ascx.cs.

6. Check both files for errors by clicking Build > Build Page. Correct any errors before proceeding.

Add Widget in Ektron CMS400.NET Workarea

1. Open the Ektron CMS400.NET Workarea.

2. Open Settings > Configuration > Personalizations > Widgets.

3. Click the Synchronize button (.

4. You see the new user control file, new_widget.ascx, at the bottom of the screen.
38 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
5. Open Settings > Configuration > Template Configuration.

6. Find the template that you created in "Building Pages" on page 3, PageLayout.aspx. Or, any Wireframe template that you are using to create a
PageBuilder page.

7. Click Update.

8. On the Update Template screen, scroll down until you see the new widget.
39 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
9. Click the Select All button (circled above).

10. Click Save ().

Note: For
directions on
creating a
PageBuilder page,
see "Steps to
Creating a
“PageBuilder”
Page" on page 4

11. Go to Content and select a folder that has a PageBuilder page.

12. Edit the PageBuilder page.

13. Open the widget menu.

14. Make sure your new widget appears on the menu.

Now that you have created a new widget and enabled it in the Ektron CMS400.NET Workarea, you can begin to customize it.
40 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
The next sections explain details about the files you copied and renamed above.

• "Understanding the User Control (.ascx) File" on page 41

• "Understanding the Codebehind (.ascx.cs) File" on page 42

• "Copy, paste, then rename the helloworld.ascx.jpg file to new_widget.ascx.jpg. Ektron CMS400.NET administrators (like Grace) and content
authors (like the Marketing team) use a widget’s image to select it, as shown below." on page 37

Understanding the User Control (.ascx) File

Here is the new_widget.ascx file that Pete uses as the basis of his widget.

<%@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”new_widget.ascx.cs” Inherits=”widgets_new_widget” %>
<%@ Register Assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"
 Namespace="System.Web.UI" TagPrefix="asp" %>

 <asp:MultiView ID="ViewSet" runat="server" ActiveViewIndex="0">

 <asp:View ID="View" runat="server">
 <!-- You Need To Do -->

<asp:Label ID="TextLabel" runat="server"></asp:Label>

<asp:Label ID="CheckBoxLabel" runat="server"></asp:Label>

 <!-- End To Do -->
 </asp:View>

 <asp:View ID="Edit" runat="server">
 <div id="<%=ClientID%>_edit">
 <!-- You Need To Do -->

<asp:TextBox ID="TextTextBox" runat="server" Style="width: 95%"> </asp:TextBox>

<asp:CheckBox ID="MyCheckBox" runat="server" Checked="false" />

 <!-- End You Need To Do -->
<asp:Button ID="CancelButton" runat="server" Text="Cancel" OnClick="CancelButton_Click" />
<asp:Button ID="SaveButton" runat="server" Text="Save" OnClick="SaveButton_Click" />

 </div>
 </asp:View>

 </asp:MultiView>

Pete notices the following elements of the file.

• The asp:MultiView element declares that the control has two possible modes: View and Edit.

<asp:MultiView ID="ViewSet" runat="server" ActiveViewIndex="0">

 in view mode, Pierre and the marketing team can see the control but not change it.

 in edit mode, Pete’s developers can change the control’s content and properties.

• Between the multiview tags is information about the control in view mode. It has two fields: one is a text field, and the other is a check box.

<asp:View ID="View" runat="server">

<asp:Label ID="HelloTextLabel" runat="server"></asp:Label>

41 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
<asp:Label ID="CheckBoxLabel" runat="server"></asp:Label>

</asp:View>

• Also between the multiview tags is information about the control in edit mode. In edit mode, a text box, a check box, and a Save button
appear. The text box and check box collect end-user input, and the Save button saves that input to the database.

<asp:View ID="Edit" runat="server">

<div id="<%=ClientID%>_edit">

 <!-- You Need To Do -->

<asp:TextBox ID="HelloTextBox" runat="server" Style="width: 95%"> </asp:TextBox>

<asp:CheckBox ID="MyCheckBox" runat="server" Checked="false" />

<!-- End You Need To Do -->

<asp:Button ID="CancelButton" runat="server" Text="Cancel" OnClick="CancelButton_Click" />

<asp:Button ID="SaveButton" runat="server" Text="Save" OnClick="SaveButton_Click" />

Understanding the Codebehind (.ascx.cs) File

Next, Pete reviews the codebehind file, new_widget.ascx.cs.

• He see a series of using statements at the top of the file, noticing the Ektron ones in particular:

using Ektron.Cms.Widget;
using Ektron.Cms;Marketing team
using Ektron.Cms.API;
using Ektron.Cms.Common;
using Ektron.Cms.PageBuilder;
using System.Text.RegularExpressions;

• Pete then notes a widget host class, which inherits the system.Web.UI.UserControl and IWidget classes. *****

public partial class widgets_new_widget : System.Web.UI.UserControl, IWidget

The following image summarizes the remaining elements of the codebehind file.
42 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
• In the next line, he sees the widget’s properties: a string for the text field, and a boolean for the check box. Here you define the variables and their
type. Possible types are string, integer, long and date.

#region properties
private string _HelloString;
private bool _CheckBoxBool;
[WidgetDataMember(true)]
public bool CheckBoxBool { get { return _CheckBoxBool; } set { _CheckBoxBool = value; } }
[WidgetDataMember("Hello Wolrd")]
public string HelloString { get { return _HelloString; } set { _HelloString = value; } }
#endregion

• He sees a widget host declaration.

private IWidgetHost _host;
43 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
• And the widget’s page_init events.

protected void Page_Init(object sender, EventArgs e)
 {
 _host = Ektron.Cms.Widget.WidgetHost.GetHost(this);
 _host.Title = "Hello World Widget";
 _host.Edit += new EditDelegate(EditEvent);
 _host.Maximize += new MaximizeDelegate(delegate() { Visible = true; });
 _host.Minimize += new MinimizeDelegate(delegate() { Visible = false; });
 _host.Create += new CreateDelegate(delegate() { EditEvent(""); });
 PreRender += new EventHandler(delegate(object PreRenderSender, EventArgs Evt) {
SetOutput(); });
 ViewSet.SetActiveView(View);
 }

Comments on the above code

 The gethost method returns a reference to the container widgethost for this widget. This is the case in both Personalization and
PageBuilder.

 The Title property is the title of this widget. By setting it in page_init for the widget, we inform the host what text to put in the title
bar above the widget. This works in both PageBuilder and Personalization.

 The events below host.Title are raised by the widgethost. It’s up to the widget to subscribe to them. In all cases, if we don’t subscribe
to them, the icons don’t show up. This is a method of attaching widget code to button clicks and other events that occur outside the widget.

 For PreRender: Ektron CMS400.NET renders the contents of this widget on pre-render, thus ensuring a single render event. Another
option is to call SetOutput on the Load event, but you can only do that if the widget is not in edit mode currently.

 The final line sets the view to display mode.

• He notices the declaration of the widget’s edit events.

void EditEvent(string settings)
 {

string sitepath = new CommonApi().SitePath;
ScriptManager.RegisterClientScriptInclude(this, this.GetType(), "widgetjavascript",

sitepath + "widgets/widgets.js");
ScriptManager.RegisterOnSubmitStatement(this.Page, this.GetType(), "gadgetescapehtml",

"GadgetEscapeHTML('" + HelloTextBox.ClientID + "');");
HelloTextBox.Text = HelloString;
MyCheckBox.Checked = CheckBoxBool;
ViewSet.SetActiveView(Edit);

}

Comments on the above code:
44 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
Important: You
must register
Javascript and
cascading style
sheet (css)
instructions in an
external file. See
"Working with
JavaScript and
Cascading Style
Sheets" on
page 65

 The Edit event is triggered by the widgethost, and since Pete subscribed to it already, it calls the delegate here.

 sitepath is used to ensure that the correct path for included files is used across installations.

 By calling the scriptmanager to include the script, Pete ensures it works inside update panels. Alternatively, he can use
Ektron.Cms.Api.Js.RegisterJSInclude ScriptManager.RegisterOnSubmitStatement(this.Page,
this.GetType(), "gadgetescapehtml", "GadgetEscapeHTML('" + HelloTextBox.ClientID + "');");

 The onsubmitstatement is javascript that is run when the widget is submitted. It calls escape html, which cleans the submitted text to
avoid any XSS.

• Pete notices the editing fields, so users can see the existing data.

HelloTextBox.Text = HelloString;

MyCheckBox.Checked = CheckBoxBool;

ViewSet.SetActiveView(Edit);

• He sees the widget’s save events.

protected void SaveButton_Click(object sender, EventArgs e)
 {
 HelloString = ReplaceEncodeBrackets(HelloTextBox.Text);
 CheckBoxBool = MyCheckBox.Checked;
 _host.SaveWidgetDataMembers();
 ViewSet.SetActiveView(View);
 }

• He notes the widget’s SetOutput events.

protected void SetOutput()
 {
 HelloTextLabel.Text = HelloString; // client javascript remove brackets, server side adds
back
 CheckBoxLabel.Text = CheckBoxBool.ToString();
 }

• He notes the widget’s Cancel events.

protected void CancelButton_Click(object sender, EventArgs e)
 {
 ViewSet.SetActiveView(View);
 }

• Finally, he reviews the encoding of the greater and less than signs.

protected string ReplaceEncodeBrackets(string encodetext)
 {
 encodetext = Regex.Replace(encodetext, "<", "<");
 encodetext = Regex.Replace(encodetext, ">", ">");
 return encodetext;
 }

Removing a Widget from the Workarea
At some point, the AcmeBooks.com Web team will need to remove a widget from use. To do this, Grace deletes the widget’s files from the site
45 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
root/widgets folder. Next, she navigates to Settings > Personalizations > Widgets and clicks Synchronize ().

The widget is removed from the list of widgets, as well as from the Dashboard of any users and community groups.
46 Ektron PageBuilder QuickStart Guide

Creating your own Widgets 4
Final Assessment from the CIO
Now, the CIO of AcmeBooks.com has a clear understanding of how PageBuilder works, and how widgets are created and placed on pages.

It’s clear to her that Ektron CMS400.NET’s PageBuilder will greatly enhance the company’s Web presence, and allow the Marketing team to respond to
changing market conditions and quickly launch and communicate promotions on the AcmeBooks.com Web site.

She is also pleased that PageBuilder will satisfy the company’s Web site developers. No longer will they have to deal with numerous daily requests for
content changes from Marketing. And Grace is happy because administering PageBuilder and widgets within the CMS is a simple, straight-forward
process.

The future looks bright at AcmeBooks.com thanks to Ektron CMS400.NET and PageBuilder.
47 Ektron PageBuilder QuickStart Guide

4 Creating your own Widgets
48 Ektron PageBuilder QuickStart Guide

5 Standard Widgets
Default widgets
Ektron CMS400.NET installs several standard widgets to the <webroot>/<siteroot>/Widgets/ folder. Information about them is below.

Widget Description Files

Atom Feed

Lets user enter path to an Atom Publishing Protocol feed. Also lets
user limit the number of feed results.

Files in widgets/Calendar

and

AtomFeed.ascx

AtomFeed.ascx.cs

atomfeed.ascx.jpg

BaseBall ESPN

Displays latest news about the baseball team selected by editing the
widget. Provided by ESPN.

BaseBallEspnMlb.ascx

BaseBallEspnMlb.ascx.cs

BaseBallEspnMlb.acx.jpg

Bookmarks

Lets user create a list of URLs by entering each one’s web address
and title.

Bookmarks.ascx

Bookmarks.ascx.cs

bookmarks.ascx.jpg

BrightCove Video

Plays any BrightCove video

Files in widgets/BrightCoveVideo

and

BrightCoveVideo.ascx

BrightCoveVideo.ascx.cs

BrightCoveVideo.ascx.jpg

Calculator

Provides a calculator

Files in widgets/Calculator

and

Calculator.ascx

Calculator.ascx.cs

Calculator.ascx.jpg
49 Ektron PageBuilder QuickStart Guide

5 Standard Widgets
Calendar

Displays a calendar. A user can add events to any day and time.

Files in widgets/Calendar

and

Calendar.ascx

Calendar.ascx.cs

Calendar.ascx.jpg

Clock

Provides a clock that displays time in the current time zone.

Clock.ascx

Clock.ascx.cs

clock.ascx.jpg

Collection Displays a collection. The user selects a Collection ID. The user can
also define

• the number entries per page

• if paging is enabled

• if teaser information appears

• if icons are included

Collection.ascx

Collection.ascx.cs

Collection.ascx.jpg

ContentBlock

Lets user enter a content ID and display that content in the Widget.
Alternatively, user can create new HTML content from the widget.

Files in widgets/ContentBlock

ContentBlock.ascx

ContentBlock.ascx.cs

contentblock.ascx.jpg

Content List

Displays a list of content blocks. In contrast to a List Summary,
where content must be in a specified folder, the ContentList control
displays content from any Ektron CMS400.NET folder.

The user can also define

• if teaser information appears

• if icons are included

• the content’s sort criterion (such as title, last modified date)

• Sort direction

ContentList.ascx

ContentList.ascx.cs

ContentList.ascx.jpg

Content Review
Places a ContentReview server control on the page. This control
allows site visitors to rate and review the current page.

For more information, see the ContentReview Server Control in the
Developer Guide.

Files in widgets/ContentReview

ContentReview.ascx

ContentReview.ascx.cs

ContentReview.ascx.jpg

Widget Description Files
50 Ektron PageBuilder QuickStart Guide

Standard Widgets 5
EmbedHTML

Inserts a browser plugin into your page. The <embed> tag also
lets you determine information about the plugin, such as:

• source of plugin to be played

• width

• height

• allow full screen (boolean)

• allow script access (boolean)

Examples of sites that provide embed code are YouTube.com,
BrightCove, and hulu.com. See example from hulu.com below.

EmbedHTML.ascx

EmbedHTML.ascx.cs

EmbedHTML.ascx.jpg

ESPN

Displays selected ESPN news feed.

To select a feed, click Edit button (circled below) and click a feed.

espn.ascx

espn.ascx.cs

espn.ascx.jpg

Flash

Displays a selected flash file which resides in Ektron CMS400.NET.
You can also set the display’s height and width. See Also: "Working
with the Flash Widget" on page 56

Files in widgets/Flash

Flash.ascx

Flash.ascx.cs

Flash.ascx.jpg

Flickr
Display Flickr’s Most Recent or Most Interesting photos. The user
also can select the number of rows and columns for the image
display.

See Also: "Working with the Flash Widget" on page 56

Flickr.ascx

Flickr.ascx.cs

flickr.ascx.jpg

Widget Description Files
51 Ektron PageBuilder QuickStart Guide

5 Standard Widgets
GoogleGadget

Gadgets designed for an IGoogle page. By default, Ektron supplies
5 Google gadgets.

To insert another Google gadget, follow these steps.

1. Drop a Google gadget widget.

2. Click the pencil to enter edit mode.

3. Open a new tab.

4. Go to http://www.google.com/ig/
directory?synd=open&hl=en-US&gl=US&cat=all.

5. Find the gadget you want to insert.

6. Click Add to your Web page.

7. Click Get the code.

8. Copy the code.

9. Return to the PageBuilder page.

10. Paste the code into the bottom of the Google widget you
dropped in Step 1.

Click Save.

Files in widgets/GoogleGadget

GoogleGadget.ascx

GoogleGadget.ascx.cs

GoogleGadget.ascx.jpg

HelloWorld

Very simple widget. Created by Ektron to help developers
understand how to create their own widgets.

HelloWorld.ascx

HelloWorld.ascx.cs

HelloWorld.ascx.jpg

Widget Description Files
52 Ektron PageBuilder QuickStart Guide

http://www.google.com/ig/directory?synd=open&hl=en-US&gl=US&cat=all

Standard Widgets 5
iFrame

Lets user enter a path to a Web page or an item on the Web page.

IFrame.ascx

IFrame.ascx.cs

iframe.ascx.jpg

List Summary

Displays an Ektron List Summary, a list of certain types of content
in a selected folder. Optionally, the display can include

• number of items to display on the page

• if the number of items in a folder exceeds the number to display,
should you display the rest on additional pages?

• if icons are included

• the content’s sort criterion (such as title, last modified date)

• sort direction

• an override of the Add Content menu item’s default text. For
example, for a news site, you could change Add Content to Add
News.

• displays in the widget content identified by the current query
string parameter.

A List Summary widget displays the following types of content.

• HTML content

• PageBuilder page

• XML Smart Form

• Blog

This widget does not display the following content types.

• Catalog entries (part of the eCommerce feature)

• Forums

• HTML Forms

• Assets

Files in widgets/ListSummary

ListSummary.ascx

ListSummary.ascx.cs

ListSummary.ascx.jpg

MessageBoard

Allows user to leave comments on the page.

For a description of the widget’s properties, see the MessageBoard
Server Control in the Developer Guide.

Files in widgets/MessageBoard

MessageBoard.ascx

MessageBoard.ascx.cs

MessageBoard.ascx.jpg

Widget Description Files
53 Ektron PageBuilder QuickStart Guide

5 Standard Widgets
Metadata List

Displays content whose metadata fits a selected folder location and
keywords.

You can also set these display options:

• number of items to display on the page

• if the number of items in the folder exceeds number to display,
should remaining items appear on additional pages?

• Navigation/Teaser: Determines display of content

 ecmNavigation - lists title of every content item

 ecmTeaser - lists title and summary

 ecmUnOrderedList - lists title and summary; unsorted
list

• if icons are included

• the content’s sort criterion (such as title, last modified date)

• sort direction

Files in widgets/MetaDataList

MetaDataList.ascx

MetaDataList.ascx.cs

MetaDataList.ascx.jpg

News

Lets user select a news feed from a group of major news providers.

Note: A developer can change the list of news feeds by editing the
siteroot/widgets/news.ascx.cs file.

IFrame.ascx

IFrame.ascx.cs

iframe.ascx.jpg

Recent blog posts

Displays a selected number of the most recent blog posts.

RecentBlogs.ascx

RecentBlogs.ascx.cs

RecentBlogs.ascx.jpg

Recent documents

Displays a selected number of the most recently published
documents.

RecentDocuments.ascx

RecentDocuments.ascx.cs

RecentDocuments.jpg

Recent forum posts

Displays a selected number of the most recent forum posts.

RecentForumPosts.ascx

RecentForumPosts.ascx.cs

RecentForumPosts.ascx.jpg

Widget Description Files
54 Ektron PageBuilder QuickStart Guide

Standard Widgets 5
RSS Feed

Allows a user to enter the path of a feed that uses Really Simple
Syndication (RSS).

RSSFeed.ascx

RSSFeed.ascx.cs

rssfeed.ascx.jpg

Sales Force Chart

Allows users to enter username, password and information about a
Sales Force chart to display that chart.

SalesForceChart.ascx

SalesForceChart.ascx.cs

SalesForceChart.ascx.jpg

Stock Ticker

Allows users to define a list of stock ticker symbols and display the
price for each symbol.

StockTicker.ascx

StockTicker.ascx.cs

StockTicker.ascx.jpg

StockTicker.css

Text Box

Displays a single field to capture text. The text is stored in the
database.

TextBox.ascx

TextBox.ascx.cs

TextBox.ascx.jpg

Weather

Allows the user who is dropping the widget to enter a Zip Code,
then displays its weather information.

ZipCode.ascx

ZipCode.ascx.cs

ZipCode.ascx.jpg

YouTube

Allows users to select from a list of YouTube feeds. When the page
appears, videos in the category appear.

Note: A developer can change the list of youtube feeds by editing
the siteroot/widgets/youtube.ascx.cs file.

YouTube.ascx

YouTube.ascx.cs

YouTube.ascx.jpg

Widget Description Files
55 Ektron PageBuilder QuickStart Guide

5 Standard Widgets
Working with the Flash Widget

• This widget supports both .flv and .swf file types.

If you will use .flv files, make sure it is added as a file type. See the Administrator Guide for more information.

• If the Flash file you want to display has already been added to Ektron CMS400.NET, use the Select File tab to it.

If the file has not been added to Ektron CMS400.NET, first use the Select File tab to select a folder for the Flash file. Then, use the Upload tab to
navigate your computer’s file system, and upload the file to the selected folder.

You Tube Video

Allows user to embed code for any YouTube video.

YouTubeVideo.ascx

YouTubeVideo.ascx.cs

YouTubeVideo.ascx.jpg

Zip Code
Allows users to find the information shown below about a location
by entering one of the items.

• Zip Code

• Area Code

• State

• City

ZipCode.ascx

ZipCode.ascx.cs

ZipCode.ascx.jpg

Widget Description Files
56 Ektron PageBuilder QuickStart Guide

Standard Widgets 5
• The thumbnail feature only works with .flv file types. If you select a Thumbnail, it appears within the Flash player when the page loads. See
example below.

• The thumbnail is only applied to this instance of the widget - not the Flash file. If you apply this video to a different widget on this page, you must
reapply a thumbnail.

• The thumbnail is an image file that was dropped into Ektron CMS400.NET as an asset. It cannot be a library image.

• The autostart feature only works with .flv files.

• If you log in then upload a flash file, and certain requirements are not met for that file, you see the following image where the widget appears.

The following conditions cause this image to appear.
57 Ektron PageBuilder QuickStart Guide

5 Standard Widgets
• The flash file’s folder properties require certain metadata and/or a taxonomy category to be applied, and they have not.

• The folder has an approval chain, and this content has not been approved.
58 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
Getting the most out of PageBuilder
This section covers the following advanced topics that help you implement PageBuilder more fully.

Wireframes:

• "Customizing the PageBuilder Menu Control" on page 59

• "Customizing the DropZone User Control" on page 60

• "Assigning a Default Page to a Wireframe" on page 62

• "Assigning a Default Taxonomy to a Wireframe" on page 63

Widgets:

• "Applying Global and Local Properties to Widgets" on page 66

• "Adding a Field to a Widget" on page 70

• "Including Help for a Widget" on page 72

• "Opening a Widget’s Edit Properties Screen in a Modal Dialog" on page 73

• "Working with JavaScript and Cascading Style Sheets" on page 65

• "Verifying that a Page is a PageBuilder Page" on page 66

Customizing the PageBuilder Menu Control
You can customize the PageBuilder Menu user control’s behavior in the following ways.

• "Determining the Ektron CMS400.NET Folder to Which Pages are Saved" on page 59

• "Changing the Page’s Cache Interval" on page 60

Determining the Ektron CMS400.NET Folder to Which Pages are Saved

How a Page’s Default Folder is Set

By default, when a site user creates a new PageBuilder page from an existing one, it is saved to the same Ektron CMS400.NET folder. For example,
consider this folder/content structure.

Root (folder id 0)

Products (folder id 20)

PageLayout: “Omaha Mailorder Steaks” (content id 35)

Services (folder id 30)
59 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
If you are viewing content id 35 and click New Page or Copy/Save as, the new page is saved to that content’s folder (Products, folder
id= 20).

Note: When you
create a new page
layout from the
Workarea, you
first select a folder
then begin
creating the page
layout.

Overriding the Default Folder

Use the PageBuilder control’s FolderID property to override the default and specify an Ektron CMS400.NET folder to which new pages are saved.
Here is an example of that property:

<ucPageBuilder:PageHost ID="ucPageHost1" FolderID="25" runat="server" />

When a user is working on a page that hosts this PageBuilder control, and he saves a new page, it is saved to folder id 25.

Changing the Page’s Cache Interval

Use the CacheInterval property to cache a page and its Widgets that represent Ektron CMS400.NET server controls, such as a Collection
Widget.

This property sets the amount of time, in seconds, that data is cached. The default is 0 (zero).

<ucPageBuilder:PageHost ID="ucPageHost1" CacheInterval="25" runat="server" />

Customizing the DropZone User Control
Three properties lets you customize the DropZone user control’s behavior in the following ways.

• "Letting Users Add Columns to a DropZone" on page 60

• "Letting Users Resize a Dropzone" on page 61

• "Setting a DropZone’s Column Widths Programmatically" on page 61

Letting Users Add Columns to a DropZone

Use the AllowAddColumn property to let users add columns to a DropZone.

<ucPageBuilder:DropZone ID="ucDropZone1" AllowAddColumn="true" AllowColumnResize="true"
runat="server" />
60 Ektron PageBuilder QuickStart Guide

Advanced PageBuilder Topics 6
For example, a Dropzone initially contains one column, but the page creator wants three. If this property is set to true, this change is possible.

This property’s default value is true.

Letting Users Resize a Dropzone

Use the AllowColumnResize property to let users change the width of columns in a DropZone.

<ucPageBuilder:DropZone ID="ucDropZone1" AllowAddColumn="true" AllowColumnResize="true"
runat="server" />

For example, column width is 100% by default. A page creator wants to change it to 50%. If this property is set to true, this change is possible.

This property’s default value is true.

Setting a DropZone’s Column Widths Programmatically

If you want to set a dropzone’s column widths programmatically, follow these steps.

1. Add the following Register statement to the page’s <head> tags.

<%@ Register Assembly="Ektron.Cms.Widget" Namespace="Ektron.Cms.PageBuilder" TagPrefix="PB" %>

Important: The
Widget and Drop-
zone assemblies
must have the
same Tag Prefix.
See example.

<%@ Register Src="~/Workarea/PageBuilder/PageControls/PageHost.ascx" TagPrefix="PB"
TagName="PageHost" %>

<%@ Register Src="~/Workarea/PageBuilder/PageControls/DropZone.ascx" TagPrefix="PB"
TagName="DropZone" %>

<%@ Register Assembly="Ektron.Cms.Widget" Namespace="Ektron.Cms.PageBuilder" TagPrefix="PB"%>

2. Within the page’s <body> tags, add the following code. the following example adds three columns of 100 pixels each.

<PB:DropZone ID="Middle" runat="server">

<ColumnDefinitions>

<PB:ColumnData width="100" columnID="0" unit="pixels"></PB:ColumnData>

<PB:ColumnData width="100" columnID="1" unit="pixels"></PB:ColumnData>

<PB:ColumnData width="100" columnID="2" unit="pixels"></PB:ColumnData>

</ColumnDefinitions>

</PB:DropZone>

Set width to an appropriate number. For the unit, the options are

• pixels

• percent

• em
61 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
If you set a dropzone’s column widths programmatically, you must also set the AllowAddColumn and AllowColumnResize properties to
false. If you do not, users working with widgets can add columns and adjust column widths on the page, but their changes will revert to these
settings when they try to save.

Customizing the Wireframe

Assigning a Default Page to a Wireframe

You can assign a default page to a wireframe. If you do, and a site visitor enters a URL with a path to that wireframe that lacks a query string ID, the
default page appears. The following example explains this feature.

To assign a default page to a wireframe, follow these steps.

1. In the Ektron CMS400.NET Workarea, create a PageBuilder page that will be used as the default pageid for a wireframe.

2. In Visual Studio, open the wireframe file assigned to that folder.

3. Find the PageBuilder menu user control (circled below).

4. Add a new property, DefaultPageID.

5. For the property’s value, enter the ID of the page you created in Step 1.

Here is an example of that line with the DefaultPageID property added.

<ucPageBuilder:PageHost ID="ucCms400Developer" DefaultPageID=”1035” runat="server" />

URL Returns this PageLayout content

http://site root/cms400developer/developer/
PageBuilder/PageLayout.aspx?pageid=1036

In the PageBuilder folder, PageLayout ID 1036

http://site root/cms400developer/developer/
PageBuilder/PageLayout.aspx

(Note lack of query string parameter)

The PageLayout page identified in the PageLayout.aspx
file’s PageBuilder menu user control DefaultPageID
property.
62 Ektron PageBuilder QuickStart Guide

Advanced PageBuilder Topics 6
6. Save your changes.

To continue the above example, if someone opens a browser and enters http://site root/cms400developer/developer/
PageBuilder/PageLayout.aspx, he is redirected to

http://site root/cms400developer/developer/PageBuilder/PageLayout.aspx?pageid=1035

Assigning a Default Taxonomy to a Wireframe

While creating a new PageBuilder page in the Ektron CMS400.NET Workarea, the user can assign one or more of the taxonomy categories that are set
in the page’s folder properties. See example below.

As a developer, you can assign a default taxonomy category to a wireframe. If you do, and the user creating a page using that wireframe makes no
changes, the default category is assigned to the page. However, the user can change the taxonomy when the Add New Page screen appears.

Note: Default
taxonomies are
applied only when
a user logs into a
Web site and adds
a new page -- they
are not applied
when creating
new pages within
the Workarea.

To assign a default taxonomy category to a wireframe, follow these steps.

Prerequisite

The ID number and the name of the top-level parent taxonomy for the default taxonomy category. For example, the screen below shows that the
Blogging category’s ID is 56, and its parent taxonomy is Ektron Products.
63 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
1. In the Ektron CMS400.NET Workarea, navigate to the folder properties screen of the folder to which the wireframe is applied.

2. Click the Edit button ().

3. Locate the Taxonomy area of the Edit Folder properties screen.

4. If you will assign to the wireframe a top-level taxonomy (that is, one of those in the area circled above), check its box.

5. If you will assign a taxonomy category (that is, a child node below a top-level taxonomy), check the box of its parent Taxonomy.

6. Save your changes to folder properties.

7. Open Visual Studio.

8. Open the wireframe to which you will assign a default taxonomy.

9. Find the PageBuilder menu user control (circled below).
64 Ektron PageBuilder QuickStart Guide

Advanced PageBuilder Topics 6
10. Add a new property, SelTaxonomyID.

11. For the property’s value, enter the ID of the default taxonomy or category.

Here is an example of that control with the SelTaxonomyID property added.

<ucPageBuilder:PageHost ID="ucCms400Developer" SelTaxonomyID=”13” runat="server" />

12. Save your changes.

To continue the above example, the next time someone creates a page based on that wireframe, taxonomy ID 13 will be the page’s default taxonomy
category. If desired, the user can change it by navigating to the Taxonomy tab and assigning different or additional categories.

Customizing Widgets
The following topics let you further customize widget behavior.

• "Working with JavaScript and Cascading Style Sheets" on page 65

• "Verifying that a Page is a PageBuilder Page" on page 66

• "Applying Global and Local Properties to Widgets" on page 66

• "Adding a Field to a Widget" on page 70

• "Including Help for a Widget" on page 72

• "Opening a Widget’s Edit Properties Screen in a Modal Dialog" on page 73

Working with JavaScript and Cascading Style Sheets

You can use JavaScript or a cascading style sheet to add custom functionality or styling to a widget. To do this, place the JavaScript or cascading style
sheet (css) instructions in an external file, then register it in the codebehind file.

Here is an example of including a JavaScript file.
65 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
void EditEvent(string settings)

JS.RegisterJSInclude(this, _api.SitePath + "widgets/contentblock/jquery.cluetip.js",
"EktronJqueryCluetipJS");

Here is an example of including a .css file.

Css.RegisterCss(this, _api.SitePath + "widgets/contentblock/CBStyle.css","CBWidgetCSS");

Important: You
must register
JavaScript and
.css files in an
external file, as
shown above. If
you do not, the
OnSubmit event
places HTML in
the TextArea field
in encoded brack-
ets (< >) and gen-
erates a
dangerous script
error.

The JS.RegisterJSInclude and Css.RegisterCss functions take three arguments.

Note that Widgets use an update panel for partial postbacks. As a result, the ASP.NET tree view and file upload controls do not work with widgets.
Ektron CMS400.NET has workarounds for these functions. For an example of a tree view, see the content block widget (site root/widgets/
contentblock.ascx). For an Ajax file uploader, see the flash widget (site root/widgets/flash.ascx).

Verifying that a Page is a PageBuilder Page

Whenever your code is interacting with a widget, you need to verify that it is on a page builder page (as opposed to another Ektron CMS400.NET page
that hosts widgets, such as personalization).

To check for this, insert the following code:

Ektron.Cms.PageBuilder.PageBuilder p = (Page as PageBuilder);

If(p==null) // then this is not a wireframe

When you want to check the mode, use code like this.

If(p.status == Mode.Edit) // we are in edit mode

Applying Global and Local Properties to Widgets

Global and local widget properties reduce your development effort by eliminating settings data classes. While you can still use these classes and
manage your own serialization, for the vast majority of types, the built-in engine performs all the work necessary.

Global properties apply to every instance of a widget. Local properties can apply to one instance of a widget. If both local and global values are
assigned to a property, the local overrides the global.

Argument Description Example (from above code)

1 A reference to the control that needs the script or style sheet on the
page. Typically, ‘this’ or ‘me’.

this

2

A unique key.

Only include the script specified by a key once.

Your organization should develop a standard way to define
JavaScript and .css keys.

• "EktronJqueryCluetipJS"

• "CBWidgetCSS"

3

The URL of the script or style sheet being included.

Ektron recommends prefixing the URL with a sitepath, so it can be
used with URLs like http://localhost/ektrontech and
http://ektrontech.

• _api.SitePath + "widgets/
contentblock/
jquery.cluetip.js"

• _api.SitePath + "widgets/
contentblock/CBStyle.css"
66 Ektron PageBuilder QuickStart Guide

Advanced PageBuilder Topics 6
As an example of using a local property to override a global, consider a ListSummary widget. You may want its sort to mostly be by modified date in
descending order, but in certain instances you want to override that and sort by title in ascending order.

The following table explains how to set the different property types.

See Also: "Setting a Widget’s Global Properties" on page 67; "Setting a Widget’s Local Properties" on page 69

Setting a Widget’s Global Properties

A global property lets an Ektron CMS400.NET developer or administrator assign properties and values that apply to all instances of a widget. You apply
a global property to the widget’s codebehind page. Administrators could then set or update the property’s value in the Workarea’s Widgets screen.

For example, the BrightCove Video widget requires a player ID. You could insert that in the widget’s codebehind file. Then, an administrator could
review and possibly update that information in the Workarea widgets screen. Whenever a user drops a BrightCove Video widget onto a page, the player
ID is already assigned.

If the developer does not set a default value in the codebehind, an administrator must set one on the Workarea’s Widgets screen.

If the developer does set a default value in the codebehind, it will be applied unless changed by an administrator on the Workarea’s Widgets screen.

Steps for Setting a Global Property

Follow these steps to set a global property.

1. Open the widget’s codebehind file, which is located in the site root/widgets folder.

2. In the properties section, insert the GlobalWidgetData attribute (shown below) to set the global property’s name and type.

[GlobalWidgetData()]

public string NewWidgetTextData { get { return _NewWidgetTextData; } set { _NewWidgetTextData =
value; } }

Here is an example.

Type Setting default value in codebehind file How to change default

Global
[GlobalWidgetData()]

public string NewWidgetTextData { get { return
_NewWidgetTextData; } set { _NewWidgetTextData = value; } }

Workarea > Settings >
Configuration > Personalizations
> Widgets

Local

[WidgetDataMember()]
public string NewWidgetTextData { get { return
_NewWidgetTextData; } set { _NewWidgetTextData = value; } }

User drops widget onto
PageBuilder page, then clicks

edit button ()
67 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
The supported types for GlobalWidgetData are

•Date Time

•int

•long

•double

•boolean

•string

•any enumeration

1. Save the codebehind file.

2. In the Ektron CMS400.NET Workarea, go to Settings > Configuration > Widgets.

3. Click the edit icon () for the widget whose codebehind file you edited in Step 1.

4. A dialog lets you view and edit global properties set in the codebehind file. See example below.
68 Ektron PageBuilder QuickStart Guide

Advanced PageBuilder Topics 6
Setting a Widget’s Local Properties

A local property lets an Ektron CMS400.NET user assign property values that apply to a particular instance of a widget. For example, the BrightCove
Video widget requires a Video ID, which identifies the video that appears where you drop the widget.

To set a local property, follow these steps.

1. Open the widget’s codebehind file, which is located in the site root/widgets folder.

2. In the properties section, insert the WidgetDataMember attribute to set the property. See example below.

[WidgetDataMember(150530105432)]1

public long VideoID { get { return _VideoID; } set { _VideoID = value; } }

3. If you want to set a default value for the widget, use the attribute’s optional argument, which follows [WidgetDataMember. In the example
above, the value is 150530105432.

4. Save the settings in your properties by populating them as you normally would.

5. In the Save event, call _host.SaveWidgetDataMembers();. See example below.
69 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
Adding a Field to a Widget

This section provides an example of adding a Content type drop down to the List Summary widget. The drop down lets the person dropping the widget
on the page select from these choices.

• all types of content

• HTML content only

• assets only

Here is what the drop down looks like once it is implemented.

To add this drop down to the List Summary widget, follow these steps.

1. In Visual Studio, open the ListSummary widget, site root/widgets/ListSummary.ascx.

2. Find the text DisplaySelectedContent.

3. Below DisplaySelectedContent, add the following code to create a drop down list for the ContentType property.

<tr>

<td>

 DisplaySelectedContent:</td>

<td>

 <asp:CheckBox ID="DisplaySelectedContentCheckBox" runat="server" />

</td>

</tr>

<tr>
70 Ektron PageBuilder QuickStart Guide

Advanced PageBuilder Topics 6
<td>

 ContentType:

</td>

<td>

<asp:DropDownList ID="ContentTypeList" runat="server">

<asp:ListItem Value="AllTypes">AllTypes</asp:ListItem>

<asp:ListItem Value="Content">Content</asp:ListItem>

<asp:ListItem Value="Assets">Assets</asp:ListItem>

</asp:DropDownList>

</td>

 </tr>

4. Save the ListSummary.ascx file.

5. Open the codebehind file, ListSummary.ascx.cs.

6. In the properties region, declare a string variable for the ContentType property, as shown below.

private string _ContentType;

7. Create a local property with default setting of AllTypes, as shown below.

[WidgetDataMember("AllTypes")]

 public string ContentType { get { return _ContentType; } set { _ContentType = value; } }

8. In the EditEvent area, set the select list's value to ContentType.

ContentTypeList.SelectedValue = ContentType;

9. In the SaveButton_Click event, set ContentType as the select list's value.

ContentType = ContentTypeList.SelectedValue;

10. In the SetListSummary() function, set the List Summary server control's ContentType to the CMSContentType property.

ListSummary1.ContentType = (CMSContentType)Enum.Parse(typeof(CMSContentType), ContentType);

11. Save the ListSummary.ascx.cs file.
71 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
Including Help for a Widget

You can include help for any widget. The help is intended to guide the user who is dropping the widget on the page and setting its properties.

The help icon only appears when a user is editing a PageBuilder page. The icon appears both when a user is viewing a widget and editing its
properties.

It is not available to a page’s site visitors.

Defining a Widget’s Help File

To create a widget’s help file, follow these steps.

1. Create an HTML file with information for users who will drop the widget on the PageBuilder page.

Note: You could
create a content
block within
Ektron
CMS400.NET
then switch to
source view, copy
the content into a
word processor
(like Notepad),
and save it with an
HTML extension.

2. Save the help file to the folder that contains the widget.

3. Add the WidgetHost’s HelpFile property to the codebehind of the page that hosts the widget. See example below.

protected void Page_Init(object sender, EventArgs e)

{

_host = Ektron.Cms.Widget.WidgetHost.GetHost(this);

_host.HelpFile = "~/widgets/myWidget/help.html";
72 Ektron PageBuilder QuickStart Guide

Advanced PageBuilder Topics 6
Opening a Widget’s Edit Properties Screen in a Modal Dialog

If your PageBuilder page has several columns, some property screens do not have adequate space for data entry. See example below.

If desired, you can display a widget’s properties screen in a modal dialog, which is much wider and provides room for data entry. See example below.
73 Ektron PageBuilder QuickStart Guide

6 Advanced PageBuilder Topics
To do this, use the ExpandOptions property in the widget’s codebehind file. Its type is Ektron.Cms.Widget.Expandable, and it is an
enumeration with three possible values.

Option to Display Properties Screen as Modal Dialog

To have the edit button Use this option

Open a modal dialog, where the user can
edit properties

Within the widget’s page_init event, set

_host.ExpandOptions = Expandable.ExpandOnEdit;

Provide a button that a user can click to
open a modal dialog

1. Within the widget’s page_init event, set

_host.ExpandOptions = Expandable.DontExpand;

2. In your EditEvent callback, update the property to

_host.ExpandOptions = Expandable.ExpandOnExpand;

See "Option to Display Properties Screen as Modal Dialog" on page 74.

Show edit options in a regular window

Note: This is the default setting. You can do
nothing to achieve this result.

Within the widget’s page_init event, set

_host.ExpandOptions = Expandable.DontExpand;
74 Ektron PageBuilder QuickStart Guide

	Contents
	PageBuilder for Developers
	Wireframes, Dropzones, and Widgets

	PageBuilder for Everyday Users
	Streamline Process and Improve Efficiency

	Overview
	Building Pages
	AcmeBooks.com
	PageBuilder Workflow
	Designing and Development
	Implementation and Maintenance

	Steps to Creating a “PageBuilder” Page
	Create a PageBuilder Wireframe
	Enable Manual Aliasing
	Identify the PageBuilder Wireframe in the CMS
	Assign the PageBuilder Wireframe to a Folder
	Create the New Page
	Place Widgets on the Page
	Part 1: Add New Column and Set Column Widths
	Part 2: Insert New Content Block Widget into Right Column
	Part 3: Insert a List Summary Widget into Left Column
	Final Assessment

	PageBuilder Code Samples
	PageLayout.aspx
	PageLayout.aspx.cs

	Creating your own Widgets
	What’s a Widget?
	Widgets at AcmeBooks.com

	Using Widgets on a PageBuilder Page
	Widgets, DropZones, and Pages
	Widget States
	Creating a Widget
	The “Hello World” Widget
	Copy, Paste and Rename HelloWorld.ascx and HelloWorld.ascx.jpg
	Update the Class Names in the New Files
	Add Widget in Ektron CMS400.NET Workarea

	Removing a Widget from the Workarea
	Final Assessment from the CIO

	Standard Widgets
	Working with the Flash Widget
	Customizing the PageBuilder Menu Control
	Determining the Ektron CMS400.NET Folder to Which Pages are Saved
	Changing the Page’s Cache Interval

	Customizing the DropZone User Control
	Letting Users Add Columns to a DropZone
	Letting Users Resize a Dropzone
	Setting a DropZone’s Column Widths Programmatically

	Customizing the Wireframe
	Assigning a Default Page to a Wireframe
	Assigning a Default Taxonomy to a Wireframe

	Customizing Widgets
	Working with JavaScript and Cascading Style Sheets
	Verifying that a Page is a PageBuilder Page
	Applying Global and Local Properties to Widgets
	Adding a Field to a Widget
	Including Help for a Widget
	Opening a Widget’s Edit Properties Screen in a Modal Dialog

	Advanced PageBuilder Topics

